Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model.

نویسندگان

  • Wanqiu Chen
  • Qingyi Ma
  • Hidenori Suzuki
  • Richard Hartman
  • Jiping Tang
  • John H Zhang
چکیده

BACKGROUND AND PURPOSE Osteopontin (OPN) is neuroprotective in ischemic brain injuries in adult experimental models; therefore, we hypothesized that OPN would provide neuroprotection and improve long-term neurological function in the immature brain after hypoxic-ischemic (HI) injury. METHODS HI was induced by unilateral ligation of the right carotid artery followed by hypoxia (8% O(2) for 2 hours) in postnatal Day 7 rats. OPN (0.03 μg or 0.1 μg) was injected intracerebroventricularly at 1 hour post-HI. Temporal expression of endogenous OPN was evaluated in the normal rat brain at the age of 0, 4, 7, 11, 14, and 21 days and in the ipsilateral hemisphere after HI. The effects of OPN were evaluated using 2-3-5-triphenyl tetrazolium chloride staining, apoptotic cell death assay, and cleaved caspase-3 expression. Neurological function was assessed by the Morris water maze test. RESULTS Endogenous OPN expression in the brain was the highest at the age of 0 day with continuous reduction until the age of 21 days during development. After HI injury, endogenous OPN expression was increased and peaked at 48 hours. Exogenous OPN decreased infarct volume and improved neurological outcomes 7 weeks after HI injury. OPN-induced neuroprotection was blocked by an integrin antagonist. CONCLUSIONS OPN-induced neuroprotection was associated with cleaved-caspase-3 inhibition and antiapoptotic cell death. OPN treatment improved long-term neurological function against neonatal HI brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective Effect of Cycloheximide on Hypoxic-Ischemic Brain Injury in Neonatal Rats

This study was done to determine the neuroprotective effect of cycloheximide on neonatal hypoxic-ischemic brain injury. Seven day-old newborn rat pups were subjected to 90 min of 8% oxygen following a unilateral carotid artery ligation. The extent of cerebral infarction was evaluated at 1 and 4 week of recovery. Apoptosis was identified by performing terminal deoxynucleotidyl transferase-mediat...

متن کامل

Granulocyte Stimulating Factor Attenuates Hypoxic-ischemic Brain Injury by Inhibiting Apoptosis in Neonatal Rats

PURPOSE This study was undertaken to determine the neuroprotective effect of granulocyte stimulating factor (G-CSF) on neonatal hypoxic-ischemic brain injury. MATERIALS AND METHODS Seven-day-old male newborn rat pups were subjected to 110 minutes of 8% oxygen following a unilateral carotid artery ligation. Apoptosis was identified by performing terminal deoxynucleotidyl transferase-mediated d...

متن کامل

Mechanism of hyperbaric oxygen preconditioning in neonatal hypoxia-ischemia rat model.

Hypoxic ischemic (HI) injury in neonates damages brain tissues. We examined the mechanism of hyperbaric oxygen preconditioning (HBO-PC) in neonatal HI rat model. Seven-day-old rat pups were subjected to left common carotid artery ligation and hypoxia (8% oxygen at 37 degrees C) for 90 min. HBO (100% O(2), 2.5 atmospheres absolute for 2.5 h) were administered by placing pups in a chamber 24 h be...

متن کامل

Rodent neonatal bilateral carotid artery occlusion with hypoxia mimics human hypoxic-ischemic injury.

We report a new clinically relevant model of neonatal hypoxic-ischemic injury in a 10-day-old rat pup. Bilateral carotid artery occlusion and 8% hypoxia (1 to 15 mins, BCAO-H) was induced with varying degrees of injury (mild, moderate, severe), which was quantified using magnetic resonance imaging including diffusion-weighted and T2-weighted imaging at 24 h and 21/28 days. We developed a magnet...

متن کامل

Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model.

Cerebral hypoxia-ischemia (HI) represents a major cause of brain damage in the term newborn. This study aimed to examine the short and long-term neuroprotective effect of hydrogen saline (H(2) saline) using an established neonatal HI rat pup model. Seven-day-old rat pups were subjected to left common carotid artery ligation and then 90 min hypoxia (8% oxygen at 37 degrees C). H(2) saturated sal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2011